# metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.015 Å R factor = 0.041 wR factor = 0.111 Data-to-parameter ratio = 11.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Rerefinement of *catena*-poly[triethylammonium [triphenylstannate(IV)- $\mu$ -2,5-thiophenedicarboxylato]] in the space group *Pc*

The structure of the title compound,  $\{(C_6H_{15}N)[Sn(C_6H_5)_3-(C_6H_2O_4S)]\}_n$ , when refined in *Pc*, comprises two independent formula units. The polyanionic chain has both Sn atoms in *trans*-C\_3SnO<sub>2</sub> trigonal–bipyramidal geometries.

Received 26 October 2005 Accepted 31 October 2005 Online 5 November 2005

### Comment

The structure of  $[(C_2H_5)_3NH][(C_6H_5)_3Sn(C_6H_2O_4S)]$ , (I), a compound belonging to the class of polymeric (dicarboxylato)triorganostannates which is expected to exhibit aqueous solubility (Ng & Kumar Das, 1997), was originally refined in space group P1 with four independent formula units to R 0.040 (Ma *et al.*, 2004). The triclinic cell can be transformed to a monoclinic cell. In the monoclinic Pc setting, the two independent triphenyltin units are linked by the two 2,5-thiophenedicarboxylates into a linear chain (Fig. 1 and Table 1). The cations are hydrogen-bonded to the chains, as detailed in Table 2. The polyanionic chain has both Sn atoms in *trans*-C<sub>3</sub>SnO<sub>2</sub> trigonal bipyramidal geometries.



### **Experimental**

| Crystal data                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{aligned} & (C_6H_{15}N)[Sn(C_6H_5)_3(C_6H_2O_4S)] \\ & M_r = 622.32 \\ & \text{Monoclinic, } Pc \\ & a = 18.354 \ (4) \ \mathring{A} \\ & b = 9.658 \ (2) \ \mathring{A} \\ & c = 18.982 \ (3) \ \mathring{A} \\ & \beta = 119.69 \ (2)^{\circ} \\ & V = 2923 \ (1) \ \mathring{A}^3 \\ & Z = 4 \end{aligned}$ | $D_x = 1.414 \text{ Mg m}^{-3}$<br>Mo K\$\alpha\$ radiation<br>Cell parameters from 846<br>reflections<br>$\theta = 2.4-23.6^{\circ}$<br>$\mu = 0.98 \text{ mm}^{-1}$<br>T = 293 (2) K<br>Block, colorless<br>$0.25 \times 0.14 \times 0.07 \text{ mm}$ |
| Data collection                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |
| Bruker SMART area-detector<br>diffractometer<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 1996)<br>$T_{\min} = 0.792, T_{\max} = 0.935$<br>14964 measured reflections                                                                                          | 7034 independent reflections<br>5750 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.043$<br>$\theta_{max} = 25.0^{\circ}$<br>$h = -21 \rightarrow 17$<br>$k = -11 \rightarrow 11$<br>$l = -21 \rightarrow 22$                                        |

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

#### Refinement

| Table 1  |           |            |       |     |
|----------|-----------|------------|-------|-----|
| Selected | geometric | parameters | (Å, ' | °). |

| Sn1-C1     | 2.157 (4) | Sn2-C19                 | 2.154 (4) |
|------------|-----------|-------------------------|-----------|
| Sn1-C7     | 2.150 (4) | Sn2-C25                 | 2.127 (6) |
| Sn1-C13    | 2.155 (4) | Sn2-C31                 | 2.180 (5) |
| Sn1-O1     | 2.276 (5) | Sn2-O7                  | 2.226 (6) |
| Sn1-O5     | 2.203 (5) | Sn2–O3 <sup>i</sup>     | 2.246 (6) |
| C1-Sn1-C7  | 110.2 (2) | $C19 - Sn^2 - C^{25}$   | 124.6 (3) |
| C1-Sn1-C13 | 109.5(2)  | C19 - Sn2 - C31         | 122.9 (2) |
| C1-Sn1-O1  | 87.9 (2)  | C19-Sn2-O3i             | 89.9 (2)  |
| C1-Sn1-O5  | 87.3 (2)  | C19-Sn2-O7              | 91.0 (2)  |
| C7-Sn1-C13 | 140.3 (2) | C25-Sn2-C31             | 112.5 (3) |
| C7-Sn1-O1  | 89.1 (2)  | C25-Sn2-O3i             | 85.8 (3)  |
| C7-Sn1-O5  | 92.4 (2)  | C25-Sn2-O7              | 91.7 (3)  |
| C13-Sn1-O1 | 89.6 (2)  | C31-Sn2-O3 <sup>i</sup> | 95.2 (2)  |
| C13-Sn1-O5 | 92.1 (2)  | C31-Sn2-O7              | 86.4 (2)  |
| O1-Sn1-O5  | 175.2 (2) | O3 <sup>i</sup> -Sn2-O7 | 177.4 (2) |

 $w = 1/[\sigma^2(F_o^2) + (0.0616P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$ 

Absolute structure: Flack (1983), from 1284 Friedel pairs Flack parameter: 0.01 (3)

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.84 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$ 

Symmetry code: (i) x - 1, y - 1, z - 1.

#### **Table 2** Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|-------------------|------|-------------------------|--------------|-----------------------------|
| N1-H1n···O4       | 0.91 | 1.86                    | 2.762 (9)    | 169                         |
| $N2-H2n\cdots O8$ | 0.91 | 1.80                    | 2.709 (10)   | 177                         |

Phenyl rings were refined as rigid hexagons with 1.39 Å edges. There was some disorder in the cations, which was not resolved. For these, the C–N distances were restrained to 1.50 (1) Å and the C–C distances to 1.54 (1) Å; the N···C and C···C distances were restrained to 2.49 (1) Å and 2.45 (1) Å, respectively. The restraints ensured no short intramolecular H···H contacts of less than 2 Å except for only one contact (H50c···H53b) only. Additionally, all atoms in the structure were restrained to approximately isotropic behavior.



Figure 1

**ORTEPII** (Johnson, 1976) plot of the polyanionic  $[(C_6H_5)_3Sn(O_2CC_4H_2SCO_2)]_n$  chain. Displacement ellipsoids are drawn at the 30% probability level. The two cations are not shown. [Symmetry code (i) = x - 1, y - 1, z - 1.]

The H atoms were positioned geometrically (C–H 0.93 to 0.97, N–H 0.91 Å) and were included in the refinement in the riding-model approximation, with U(H) set to 1.2 to 1.5 times  $U_{eq}(C, N)$ .

Data collection: *SMART* (Bruker, 1996); cell refinement: *SAINT* (Bruker, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

I thank Professor Chun-Lin Ma of Liaocheng Teachers University for the diffraction data, and the University of Malaya for supporting this study.

#### References

- Bruker (1996). SAINT and SMART. Bruker Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Ma, C.-L., Sun, J.-F., Qui, L.-L. & Cui, J.-C. (2004). J. Inorg. Organomet. Polym. 14, 161–168.

Ng, S. W. & Kumar Das, V. G. (1997). *Trends Organomet. Chem.* 2, 107–115. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.